فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی










متن کامل


اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    12
  • شماره: 

    45
  • صفحات: 

    47-66
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    53
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

1پیش بینی تقاضای محصولات زنجیره تأمین برای تعیین استراتژی ها و تصمیم گیری ها موضوعی بسیار با اهمیت و پرچالش است. با افزایش تنوع و تعداد محصولات، این چالش ها نیز افزایش می یابد. ارائه چارچوب ها و روش هایی که با وجود تنوع محصولی، تفاوت در کاربردها و ویژگی ها و حجم داده های مختلف، از انعطاف پذیری، دقت و مزیت های لازم برای پیش بینی همه دسته های محصولی برخوردار باشد، برای مدیران حیاتی است. در این راستا، دو مدل یادگیری با نظارت، XGBoost Regressor (XGBR) و Gradient Boosting Regressor (GBR)، بر روی مجموعه داده های Global Superstore، در سایت Kaggle پیاده‎سازی شده است. این مجموعه داده شامل 3788 محصول در سه Category محصولی متنوع، هفده Sub Category و51،290 سفارش است. حجم داده های محدود محصولات سبب می گردد پیش بینی بسیاری از محصولات و کسب نتیجه مناسب از روش ها میسر و مفید نگردد. با توجه به اینکه در این تحقیق تجربی هدف پیش بینی تقاضا، بکارگیری در تصمیمات استراتژیک است، رویکردی تجمیع محصولی برای این مسئله پیشنهاد شده که با توجه به مشابهت در محصولات Sub Categoryها پیش بینی آنها به صورت تفکیک شده صورت گیرد. به منظور بررسی اثر میزان داده بر عملکرد مدل ها، داده های مجموعه داده با استفاده از تکنیک Augmentation Data افزایش یافته و با اجرای مجدد مدل ها، نتایج پیش بینی دو مدل با هم مقایسه شده اند. براساس ارزیابی نتایج پیش بینی با داده های افزایش یافته با دو معیار MSE و MAE، مدل XGBR در کمترین مقدار به ترتیب به 12/0 و 10/0، و مدل GBR نیز به مقادیر 13/0 و 15/0 دست یافته است. همچنین، نتیجه معیار D2 Score در مدل XGBR در بیشترین مقدار 97/0 و در مدل GBR مقدار 96/0 است. با افزایش داده ها، مقادیر معیارهای اندازه گیری خطای به صورت چشمگیری و تا بیش از 80 درصد کاهش یافته و در داده های با حجم بیشتر، XGBR برتری نسبی دارد. چارچوب و مدل های پیشنهادی می تواند در صنایع با مسائل مشابه در سطح استراتژی استفاده شود.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 53

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    17
  • شماره: 

    2
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    29
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 29

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2023
  • دوره: 

    9
  • شماره: 

    3
  • صفحات: 

    378-387
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    30
  • دانلود: 

    0
چکیده: 

Introduction: The present study discusses the importance of having a predictive method to determine the prognosis of patients with diseases like Covid-19. This method can assist physicians in making treatment decisions that improve survival rates and avoid unnecessary treatments. This research also highlights the importance of calibration, which is often overlooked in model evaluation. Without proper calibration, incorrect decisions can be made in disease treatment and preventive care. Therefore, the current study compares two highly accurate machine learning algorithms, Gradient Boosting and Extreme Gradient Boosting, not only in terms of prediction accuracy but also in terms of model calibration and speed. Methods: This study involved analyzing data from Covid-19 patients who were admitted to two hospitals in Mashhad city, Razavi Khorasan province, over a span of 18 months. The k-fold cross-validation method was employed on the training dataset (K=5) to conduct the study. The accuracy and calibration of two methods (Gradient Boosting and Extreme Gradient Boosting) in predicting survival were compared using the Concordance Index and calibration. Results: The Concordance Index values obtained for Gradient Boosting and Extreme Gradient Boosting models were 0. 734 and 0. 736, in the imbalanced and In the balanced data, the Concordance Index values were 0. 893 for Gradient Boosting and 0. 894 for Extreme Gradient Boosting. The surv. calib_beta index, the Gradient Boosting model had an estimated value of 0. 59 in the imbalanced data and 0. 66 in the balanced data. The Extreme Gradient Boosting model had an estimated value of 0. 86 in the balanced data and 0. 853 in the imbalanced data. The Extreme Gradient Boosting model was faster in the learning process compared to the Gradient Boosting model. Conclusion: The Gradient Boosting and Extreme Gradient Boosting models exhibited similar prediction accuracy and discrimination power, but the Extreme Gradient Boosting model demonstrated relatively good calibration compare to Gradient Boosting model.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 30

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 3
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

Ghafouri Kesbi Farhad

اطلاعات دوره: 
  • سال: 

    621
  • دوره: 

    12
  • شماره: 

    1
  • صفحات: 

    31-37
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    24
  • دانلود: 

    0
چکیده: 

AbstractThe aim of this study was to study the performance of xgboost algorithm in genomic evaluation of complex traits as an alternative for Gradient Boosting algorithm (GBM). To this end, genotypic matrices containing genotypic information for, respectively, 5,000 (S1), 10,000 (S2) and 50,000 (S3) single nucleotide polymorphisms (SNP) for 1000 individuals was simulated. Beside xgboost and GBM, the GBLUP which is known as an efficient algorithm in terms of accuracy, computing time and memory requirement was also used to predict genomic breeding values. xgboost, GBM and GBLUP were run in R software using xgboost, gbm and synbreed packages. All the analyses were done using a machine equipped with a Core i7-6800K CPU which had 6 physical cores. In addition, 32 gigabyte of memory was installed on the machine. The Person's correlation between predicted and true breeding values (rp,t) and the mean squared error (MSE) of prediction were computed to compare predictive performance of different methods. While GBLUP was the most efficient user of memory, GBM required a considerably high amount of memory to run. By increasing size of data from S1 to S3, GBM went out from the competition mainly due to its high demand for memory. Parallel computing with xgboost reduced running time by %99 compared to GBM. The speedup ratios (the ratio of the GBM runtime to the time taken by the parallel computing by xgboost) were 444 and 554 for the S1 and S2 scenarios, respectively. In addition, parallelization efficiency (speed up ratio/number of cores) were, respectively, 74 and 92 for the S1 and S2 scenarios, indicating that by increasing the size of data, the efficiency of parallel computing increased. The xgboost was considerably faster than GBLUP in all the scenarios studied. Accuracy of genomic breeding values predicted by xgboost was similar to those predicted by GBM. While the accuracy of prediction in terms of rp,t was higher for GBLUP, the MSE of prediction was lower for xgboost, specially for larger datasets. Our results showed that xgboost could be an efficient alternative for GBM as it had the same accuracy of prediction, was extremely fast and needed significantly lower memory requirement to predict the genomic breeding values.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 24

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
عنوان: 
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

  • شماره: 

  • صفحات: 

    -
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    31
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 31

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    10
  • شماره: 

    1
  • صفحات: 

    24-32
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    58
  • دانلود: 

    23
چکیده: 

در این مطالعه از روش ولتامتری پالس تفاضلی برای تعیین همزمان غلظت بیسموت و مس استفاده شد. 25 مخلوط از بیسموت و مس در نسبت های طراحی شده با استفاده از تکنیک  ولتامتری پالس تفاضلی اندازه گیری شد. با این حال، ولتاموگرام های پالس تفاضلی این دو ماده با هم همپوشانی دارند که تجزیه و تحلیل کمی غلظت ها را بر اساس جریان پیک آنها دشوار می کند. برای حل این موضوع، ولتاموگرام ها با استفاده از مشتق سازی و تفریق پیک پیش پردازش شدند. ولتاموگرام مشتق دوم با نسبت غلظت مس به بیسموت همبستگی زیادی داشت که منجر بهبود صحت پیش بینی ها شد. برای بهبود بیشتر دقت و صحت نتایج مجموعه های آموزش و پیش بینی، از مدل های رگرسیون تقویت ایکس جی و تقویت گرادیان استفاده شد. مدل های رگرسیون تقویت ایکس جی و تقویت گرادیان دقت و صحت بالایی را با مقادیرضریب همبستگی  به ترتیب 877/0 و 993/0 برای مس و 879/0 و 993/0 برای بیسموت نشان دادند. برای تقویت ایکس جی و تقویت گرادیان میانگین بازیابی مس به ترتیب 84/99% و 07/98% بود، در حالی که بازیابی بیسموت به ترتیب 17/93% و 85/90% بود. علاوه بر این، اعتبارسنجی متقاطع با استفاده از 10 نمونه، میانگین امتیاز 565/45 و میانگین خطای مطلق 051/13 برای مس، و میانگین نمره 600/13 و میانگین خطای مطلق 920/10 را برای بیسموت نشان داد. به طور کلی، نتایج نشان می دهد که روش پیشنهادی روشی دقیق و صحیحی برای تعیین همزمان غلظت بیسموت و مس است.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 58

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 23 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

    15
  • شماره: 

    3
  • صفحات: 

    41-60
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    70
  • دانلود: 

    13
چکیده: 

با گسترش دانش سنجش از دور، استفاده از تصاویر هایپراسپکترال روزبه روز افزایش و عمومیت می یابد. طبقه بندی یکی از محبوب ترین موضوعات در سنجش از دور ابرطیفی است. طی دو دهة گذشته، روش های بسیاری برای مقابله با مشکل طبقه بندی داده های هایپراسپکترال پیشنهاد شده است. در پژوهش حاضر، ساختاری مبتنی بر یادگیری شبکه های کپسول برای طبقه بندی تصاویر ابرطیفی به کار رفته است؛ به گونه ای که ساختار شبکه بتواند، با استفاده از یک لایة کانولوشنی و یک لایة کپسول، بهترین حالت تولید ویژگی ها را داشته باشد و درعین حال از بیش برازش شبکه روی نمونه های آموزشی جلوگیری کند. نتایج به دست آمده نشان از کیفیت بالای ویژگی های تولیدی در ساختار پیشنهادی دارد. درراستای بهبود دقت طبقه بندی، رویکرد استخراج ویژگی ازطریق شبکة طراحی شده و طبقه بندی با استفاده از الگوریتم درخت تقویتی XGBoost، با روش طبقه بندی ازطریق شبکة عمیق سراسری مقایسه شد تا، علاوه بر بررسی و کیفیت سنجی ویژگی های عمیق برداری تولیدی به روش پیشنهادی در طبقه بندی کننده های گوناگون، میزان توانایی شبکه های عمیق سراسری نیز، در کاربرد طبقه بندی، بررسی شود. رویکرد کپسول پیشنهادی شامل سه لایة اصلی است: 1)  Prime با کپسول هایی به اندازة 8 و 32 فیلتر 9×9 و گام حرکتی 2؛ 2) Digitcaps دارای دَه کپسول شانزده بعدی؛ 3) لایة تماماً متصل. نتایج بررسی دو رویکرد برای شبکة عمیق و نیز ترکیب شبکه های کپسول با الگوریتم درخت تقویتی XGBoost مقایسه شد. رویکردهایی همچون SVM، RF-200، LSTM، GRU، و GRU-Pretanh برای مقایسة رویکرد پیشنهادی براساس پیکربندی هایی درنظر گرفته شدند که در تحقیقات به آنها اشاره شده بود. برای ارزیابی مدل پیشنهادی، مجموعه دادة Indian Pines نیز، شامل شانزده کلاس متفاوت، به کار رفت. با استفاده از روش پیشنهادی ترکیبی، طبقه بندی تصاویر با دقت 99% روی داده های آموزش و دقت 5/97% روی داده های تست انجام می شود.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 70

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 13 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    208
  • شماره: 

    -
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    5
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 5

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

نشریه: 

SCIENTIFIC REPORTS

اطلاعات دوره: 
  • سال: 

    2022
  • دوره: 

    12
  • شماره: 

    1
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    16
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 16

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    10
تعامل: 
  • بازدید: 

    34
  • دانلود: 

    0
چکیده: 

This paper explores the capability of various machine learning algorithms, including Random Forest and advanced Gradient Boosting techniques such as XGBoost, LightGBM, and CatBoost, to predict customer churn in the telecommunications sector. For this analysis, a dataset available to the public was employed. The performance of these algorithms was assessed using recognized metrics, including Accuracy, Precision, Recall, F1-score, and the Receiver Operating Characteristic Area Under Curve (ROC AUC). These metrics were evaluated at different phases: subsequent to data preprocessing and feature selection,following the application of SMOTE and ADASYN sampling methods,and after conducting hyperparameter tuning on the data that had been adjusted by SMOTE and ADASYN. The outcomes underscore the notable efficiency of upsampling techniques such as SMOTE and ADASYN in addressing the imbalance inherent in customer churn prediction. Notably, the application of random grid search for hyperparameter optimization did not significantly alter the results, which remained comparatively unchanged. The algorithms' performance post-ADASYN application marginally surpassed that observed after SMOTE application. Remarkably, LightGBM achieved an exceptional F1-score of 89% and an ROC AUC of 95% subsequent to the ADASYN sampling technique. This underlines the effectiveness of advanced Boosting algorithms and upsampling methods like SMOTE and ADASYN in navigating the complexities of imbalanced datasets and intricate feature interdependencies.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 34

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button